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Abstract 

Anupama Indukuri 

FUNCTIONALIZED HETEROCYCLICS AS POTENTIAL THERAPEUTICS 

2018-2019 

Subash Jonnalagadda, Ph.D. 

Master of Science in Pharmaceutical Sciences 

 

Heterocyclic compounds play an important role in pharmaceutical drug 

development. Several natural products and biologically active compounds contain 

heterocyclic motifs in them.  Multicomponent coupling reactions offer an excellent 

platform for the synthesis of diverse libraries of heterocyclic compounds.  We have been 

working on the synthesis of novel heterocyclic small molecules utilizing reactions such as 

Baylis-Hillman reaction, Passerini reaction, Click reaction, reductive amination aldol 

condensation, etc.   

In the current project, we prepared three series of heterocyclic compounds using 

Passerini and Baylis-Hillman reactions as key steps.  Owing to the importance of 

heterocyclic chemistry in drug discovery and the ease of synthesis, the current work would 

be of interest to medicinal and natural product chemists.  
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Chapter 1 

Preparation of Heterocyclic Compounds 

Introduction 

Heterocyclic moieties are present in many natural products and medicinally 

important compounds.1-8 Heterocyclic compounds exhibit wide variety of biological 

activities such as anti-cancer,9 anti-bacterial,10-13 anti-fungal,14 anti-tuberculosis,15 anti-

malarial,16 anti-asthma,17 and other activities.18-22  Several drugs also contain heterocyclic 

motifs in them (eg. Fezolamin,23 Celecoxib,24 Rimonabant,25 Ruxolitinib,26 Pyrazofurin,27 

Crizotinib,28 Tepoxalin29 Ionazolac30, etc.).31-33 We have been working on the development 

of novel heterocyclic compounds for the past several years.34-46   

Multicomponent coupling reactions play an important role not only in medicinal 

chemistry but in organic synthesis as well particularly in the preparation of heterocyclic 

compounds.47 We have also been working on the synthesis of diverse library of compounds 

via multicomponent coupling reactions.  Some of the famous multicomponent coupling 

reactions include Passerini reaction,48-52 Ugi reaction,53 Baylis-Hillman reaction,54-61 aldol 

condensation, reductive amination, Click reaction, 62-65 etc.  The two key reactions involved 

in the present study include Passerini reaction (Figure 1) and Baylis-Hillman reaction 

(Figure 2). 
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Passerini Reaction 

Passerini reaction involves the synthesis of α-acyloxy carboxamides 4 via a three-

component coupling reaction between aldehyde/ketones 1, carboxylic acids 2, and 

isocyanides 3, while Ugi reaction involves a four-component coupling of 

aldehydes/ketones 1, carboxylic acids 2, isocyanides 3, and amines 5 towards the synthesis 

of α-acylamino amides 6 (Figure 1). 

 

Figure 1. Passerini Reaction 

 

Baylis-Hillman Reaction 

Baylis-Hillman reaction involves the coupling of activated olefins such as 

acrylates, vinyl ketones, and acrolein 8 with aldehydes 7 to produce densely functionalized 

allylic alcohols 9 in high yields (Figure 2).66 While this reaction does tolerate wide variety 

of functional groups, it does have a drawback of being extremely slow (often this reaction 
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takes two weeks or longer for completion) and multiple efforts have been made accordingly 

towards increasing the rate of this reaction.67-74  Baylis-Hillman reaction has been reported 

with olefins such as acrylate,75,76 vinyl ketone,77,78,79 acrolein,71,80 acrylamide,69  

acrylonitrile, 78,81 vinyl sulfone,82 vinyl sulfoxide,83 vinyl phosphonate, and allenyl 

esters84,85 leading to the formation of corresponding allylic alcohols. These allylic alcohols 

can be further functionalized via acetylation followed by nucleophilic substitution to 

generate diverse library of compounds 11 (Figure 2).    

 

 

Figure 2. Baylis-Hillman Reaction 
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Proposed Target Compounds 

Based on our interest involving the applications of heterocyclic chemistry in 

medicinal compounds, we undertook the synthesis of conjugates 12-14 using Baylis-

Hillman and Passerini reactions as key steps (Figure 3). 

 

 

Figure 3. Target Compounds 
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Proposed Synthesis of Target 12 

We hypothesized the synthesis of 12 via Passerini reaction of bromomethyl benzoic 

acid 15 with isocyanide 16, and benzaldehyde 17 followed by sequential nucleophilic 

substitution with piperazine as shown in Figure 4. 

 

 

Figure 4. Proposed Synthesis of Target Compound 12 
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Proposed Synthesis of Target 13 

The synthesis of conjugate 13 was envisioned via conversion of amine 22 into 

isocyanate 23 followed by reaction with monoprotected ethylenediamine 24 and amide 

coupling with Baylis-Hillman reaction derived -piperazinylmethylcinnamic acid 27. The 

synthesis of compound 27 was in turn hypothesized via substitution of BH acetate 21 with 

N-methylpiperazine 26 (Figure 5). 

 

Figure 5. Proposed Synthesis of Target Compound 13 
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Proposed Synthesis of Target 14 

The synthesis of 14 was proposed via sequential coupling of glycine analog 28 with 

aniline 22 and -piperazinylmethylcinnamic acid 27 (Figure 6). 

 

 

 

Figure 6. Proposed Synthesis of Target Compound 14 
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Preparation of Target Compound 12 

 The synthesis of compound 12 was initiated with the Passerini reaction of p-

bromomethylbenzoic acid 15.  15 was in turn was synthesized via benzylic halogenation 

of p-toluic acid using potassium bromate and sodium thiosulfate.86  p-

Bromomethylbenzoic acid 15 was further reacted with t-butyl isocyanide and three 

aldehydes (benzaldehyde, p-fluorobenzaldehyde, and p-cyanobenzaldehyde) 17a-c in 

water and stirred at room temperature overnight to obtain the α-acyloxy amides 18a-c in 

very good yield (Figure 7).  The compounds synthesized via Passerini reaction are shown 

in Figure 8. 

 

 

Figure 7. Preparation of 18a-c via Passerini Reaction 
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Figure 8. Compounds Synthesized via Passerini Reaction 

 

 The α-acyloxyamides 18a-c obtained via Passerini reaction were further reacted 

with N-Boc piperazine 19 in the presence of potassium carbonate and DMF to obtain N-

Boc piperazinylmethyl benzoates 30a-c (Figure 9).  The compounds synthesized via this 

protocol are shown in Figure 10. 

 

Figure 9.  Preparation of 30a-c via Nucleophilic Substitution 
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Figure 10. Compounds synthesized via Nucleophilic Substitution 

 The Boc protecting group in 30a-c was cleaved via treatment with hydrochloric 

acid in dioxane to obtain the piperazine analogs 20a-c (Figure 11).  The compounds 

synthesized via this protocol are shown in Figure 12. 

 

 

Figure 11. Deprotection of N-Boc-piperazine 
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Figure 12. Compounds synthesized via Boc deprotection 

 

 The acetates 21a-d required for coupling with piperazines 20a-c were prepared via 

Baylis-Hillman reaction. Treatment of methyl acrylate 32 with benzaldehyde, p-

fluorobenzaldehyde, p-cyanobenzaldehyde, and p-anisaldehyde 31a-d in the presence of 

diazabicyclo[2.2.2]octane yielded the allylic alcohols 33a-d, which were further subjected 

to acetylation with acetic anhydride and triethyl amine to yield the requisites acetates 21a-

d (Figure 13).  The acetates prepared via this protocol are shown in Figure 14. 
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Figure 13. Preparation of Allylic Acetates 21a-d via Baylis-Hillman Reaction 

 

 

Figure 14. Acetates synthesized via Baylis-Hillman Reaction  

 

 The target compounds 12a-f were eventually synthesized via the reaction of 

piperazine hydrochloride 20a-c with acetates 21a-d in the presence of potassium carbonate 

and DMF (Figure 15).  The target compounds synthesized via this protocol (Figure 16) 

were rigorously characterized using proton and carbon NMR spectroscopy as well as mass 

spectrometry. 
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Figure 15. Preparation of Target Compounds 12a-f 
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Figure 16. Target Compounds 12a-f Synthesized via SN2’ Substitution  

 

Preparation of Target Compound 13 

 The synthesis of target compound 13 was initiated with the preparation of ureas 

25a-c (Figure 17).  Isocyanates 23a-c were obtained upon treatment of aniline, 4-cyano-3-

trifloromethylaniline, and 4-nitro-3-trifloromethylaniline (22a-c) with triphosgene.  The 

isocyanates 23a-c were further treated with N-boc-ethylenediamine 24 in the presence of 

triethylamine to afford the ureas 34a-c, which were further deprotected via acid treatment 

yielding the amine hydrochlorides 25a-c (Figure 17). The compounds synthesized via this 

protocol are shown in Figure 18. 
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Figure 17. Preparation of N-Phenyl-N’-2-aminoethyl ureas 25a-c 

 

 

 

Figure 18. N-Phenyl-N’-2-aminoethyl ureas 25a-c 
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 Final target compounds 13a-c were synthesized via EDCI-HOBt coupling of amine 

hydrochlorides 25a-c with Baylis-Hillman reaction derived -piperazinylmethylcinnamic 

acid 27.  The cinnamic acid 27 was synthesized in two steps from Baylis-Hillman acetate 

21 via nucleophilic substitution with N-methylpiperazine 26 followed by alkaline 

hydrolysis of the resulting a-piperazinylmethylcinnamate 35 (Figure 19).  The target 

compounds synthesized via this protocol are shown in Figure 20.  The two compounds 13b 

and 13c were inspired from the chemotherapeutic drugs such as nilutamide and 

bicalutamide. 
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Figure 19. Preparation of Target Compounds 13 
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Figure 20. Target Compounds 13 Synthesized via Peptide Coupling 

 

Preparation of Target Compound 14 

 Finally, the target compounds 14a-b were synthesized starting from N-Boc glycine 

28.  Coupling of 28 with amines 22a-b in the presence of oxalyl chloride and triethyl amine 

resulted in the formation of amides 36a-b, which were further deprotected using HCl and 

dioxane to yield the amine hydrochlorides 29a-b.  The N-methylpiperazinylmethyl 

cinnamic acid 27 synthesized above (Figure 19) was used for reaction with amine 

hydrochlorides 29a-b under EDCI and HOBt coupling conditions to generate the final 

target compounds 14a-b (Figure 21).  The compounds synthesized via this protocol are 

shown in Figure 22.  The biological evaluation of these compounds as potential anti-cancer 

agents is underway. 
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Figure 21. Preparation of Target Compounds 14 

 

 

Figure 22. Target Compounds 14 Synthesized via Peptide Coupling 

 

 



 

 

20 

Conclusions 

 Heterocyclic compounds play in important role in medicinal chemistry and drug 

discovery.  In this project, we have prepared three series of heterocyclic compounds using 

Passerini and Baylis-Hillman reactions as key steps.  Once the preliminary biological 

screening has been completed, the ease of synthesis of the above-mentioned protocols 

coupled with the versatility of the multicomponent coupling reactions, will enable us to 

synthesize diverse library of compounds for potential drug-design applications.   

 

  



 

 

21 

Chapter 2 

Experimental Procedures and Spectral Characterization 

Materials 

 All the reactants were of reagent grade, and purchased from Acros Organics, Alfa 

Aesar or Sigma Aldrich, and used without further purification. All solvents were used 

without further drying or purification and were of ACS grade purchased from Fisher 

Scientific. 

Instrumentation 

 Nuclear Magnetic Spectroscopy (NMR) spectra were produced using the Varian 

400 MHz spectrophotometer. The instrument was maintained at 25o C operating at 400 

MHz for 1H NMR, and 100 MHz for 13C NMR. The deuterated solvent (CDCl3, DMSO-

d6) used for each respective spectrum is referenced to the appropriate literature peak shift. 

Procedures 

 

 

Preparation of 2-(tert-Butylamino)-2-oxo-1-phenylethyl 4-(bromomethyl)benzoate 18a: 

To a stirred solution of benzaldehyde 17a (500 mg, 4.7 mmol) and 4-
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(bromomethyl)benzoic acid 15 (1.2 g, 5.6 mmol) in water (5.0 mL), was added tbutyl 

isocyanide (469 mg, 5.6 mmol) and stirred overnight at room temperature. Upon 

completion as indicated by thin layer chromatography (TLC), the reaction mixture was 

washed with saturated NaHCO3 followed by extraction with ethyl acetate (2 x 10 mL), 

dried over anhydrous Na2SO4 and concentrated under vacuum. The resulting residue was 

purified by triturating with hexanes to obtain pure 1.7 g (92%) of 18a as white solid. Mp 

155 – 157 °C; 1H NMR (400 MHz, CDCl3): δ (ppm) 8.06 (d, J = 8.4 Hz, 2H), 7.47 – 7.54 

(m, 4H), 7.35 – 7.42 (m, 3H), 6.20 (s, 1H), 5.92 (s, 1H), 4.50 (s, 2H), 1.36 (s, 9H); 13C 

NMR (101 MHz, CDCl3): δ (ppm) 167.3, 164.4, 143.4, 135.8, 130.3, 129.3, 129.2, 128.9, 

128.8, 127.5, 76.2, 51.6, 32.1, 28.7. ESIMS: m/z calculated for C20H22BrNO3 (M+H)+ 

404.09, found 404.02. 

 

 

Preparation of 2-(tert-Butylamino)-1-(4-fluorophenyl)-2-oxoethyl 4-

(bromomethyl)benzoate 18b: Procedure similar to that of 18a. The reaction of 4-fluoro 

benzaldehyde 17b (400 mg, 3.2 mmol), 4-(bromomethyl)benzoic acid 15 (832 mg, 3.86 

mmol), and tbutyl isocyanide (320 mg, 3.86 mmol) yielded 1.2 g (89%) of 18b as white 

solid. Mp 167 – 169 °C; 1H NMR (400 MHz CDCl3): δ (ppm) 8.04 (d, J = 8.4 Hz, 2H), 

7.45 – 7.53 (m, 4H), 7.07 (t, J = 8.7 Hz, 2H), 6.18 (s, 1H), 5.98 (s, 1H), 4.50 (s, 2H), 1.37  
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(s, 9H); 13C NMR (101 MHz, CDCl3): δ (ppm) 167.1, 164.3, 162.9 (d, J = 248.0 Hz), 143.5, 

131.7 (d, J = 3.3 Hz), 130.2, 129.4 (d, J = 8.5 Hz), 129.3, 129.1, 115.8 (d, J = 21.8 Hz), 

75.4, 51.7, 31.9, 28.7. ESIMS: m/z calculated for C20H21BrFNO3 (M+Na)+ 444.06, found 

444.05. 

 

Preparation of 2-(tert-Butylamino)-1-(4-cyanophenyl)-2-oxoethyl 4-

(bromomethyl)benzoate 18c: Procedure similar to that of 18a. The reaction of 4-cyano 

benzaldehyde 17c (500 mg, 3.8 mmol), 4-(bromomethyl)benzoic acid 15 (984 mg, 4.6 

mmol), and tbutyl isocyanide (379 mg, 4.6 mmol) yielded 1.4 g (86%) of 18c as white 

solid. Mp 161 – 164 °C; 1H NMR (400 MHz, CDCl3): δ (ppm) 8.05 (d, J = 8.4 Hz, 2H), 

7.68 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 8.0 Hz, 2H), 6.22 (s, 1H), 

6.07 (s, 1H), 4.51 (s, 2H), 1.36 (s, 9H); 13C NMR (101 MHz, CDCl3): δ (ppm) 166.1, 164.0, 

143.9, 140.9, 132.5, 130.2, 129.4, 128.6, 127.9, 118.4, 112.7, 75.2, 51.9, 31.8, 28.6. 

ESIMS: m/z calculated for C21H21BrN2O3 (M+Na)+ 451.06, found 451.05.  

 

Preparation of tert-Butyl 4-(4-((2-(tert-butylamino)-2-oxo-1-

phenylethoxy)carbonyl)benzyl) piperazine- 1-carboxylate 30a: Potassium carbonate 
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(513 mg, 3.7 mmol) was added to a stirred solution of tert-butyl piperazine-1-carboxylate 

(507 mg, 2.7 mmol) and 18a (1.0 g, 2.5 mmol) in N,N-dimethylformamide (10.0 mL) at 

room temperature and stirred overnight at room temperature. Upon completion, the 

reaction mixture was diluted with cold water to affect the precipitation of solid.  The 

resulting solid was filtered and dried under vacuum to furnish 1.06 g (84%) of 30a as white 

solid. Mp 97 – 99 °C; 1H NMR (400 MHz, CDCl3): δ (ppm) 8.03 (d, J = 8.4 Hz, 2H), 7.51 

(d, J = 6.8 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.33 – 7.41 (m, 3H), 6.20 (s, 1H), 5.98 (s, 

1H), 3.56 (s, 2H), 3.36 – 3.47 (m, 4H), 2.33 – 2.43 (m, 4H), 1.45 (s, 9H), 1.36 (s, 9H); 13C 

NMR (101 MHz, CDCl3): δ (ppm) 167.4, 164.8, 154.7, 144.3, 135.9, 129.8, 129.1, 128.8, 

128.7, 128.2, 127.4, 79.6, 75.9, 62.5, 52.9, 51.5, 43.9, 43.1, 28.7, 28.4; ESIMS: m/z 

calculated for C29H39N3O5 (M+Na)+ 532.28, found 532.25. 

 

Preparation of tert-Butyl 4-(4-((2-(tert-butylamino)-1-(4-fluorophenyl)-2-oxoethoxy) 

carbonyl) benzyl) piperazine-1-carboxylate (30b ): Procedure similar to that of 30a. The 

reaction of 18b (1.0 g, 2.4 mmol) with tert-butyl piperazine-1-carboxylate (484 mg, 2.6 

mmol) in presence of potassium carbonate (488 mg, 3.5 mmol) yielded 1.0 g (82%) of 30b 

as white solid. Mp 127 – 129 °C; 1H NMR (400 MHz, CDCl3): δ (ppm) 8.01 (d, J = 8.0 

Hz, 2H), 7.49 (dd, J = 5.2, 8.4 Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 7.07 (t, J = 8.6 Hz, 2H), 

6.18 (s, 1H), 6.03 (s, 1H), 3.56 (s, 2H), 3.42 (t, J = 4.6 Hz, 4H), 2.38 (t, J = 4.6 Hz, 4H),  
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1.45 (s, 9H), 1.37 (s, 9H); 13C NMR (101 MHz, CDCl3): δ (ppm) 167.2, 164.7, 162.9 (d, J 

= 247.8 Hz), 154.7, 144.5, 131.9 (d, J = 3.1 Hz), 129.8, 129.3 (d, J = 8.4 Hz), 129.1, 128.1, 

115.7 (d, J = 21.7 Hz), 79.6, 75.2, 62.5, 52.9, 51.6, 43.9, 43.2, 28.6, 28.4; ESIMS: m/z 

calculated for C29H38FN3O5 (M+Na)+ 550.27, found 550.35.  

 

 

Preparation of tert-Butyl 4-(4-((2-(tert-butylamino)-1-(4-cyanophenyl)-2-

oxoethoxy)carbonyl) benzyl)piperazine-1-carboxylate ( ): Procedure similar to that of 30a. 

The reaction of 18c (900 mg, 2.1 mmol) with tert-butyl piperazine-1-carboxylate (429 mg, 

2.3 mmol) in presence of potassium carbonate (432 mg, 3.1 mmol) yielded 883 mg (79%) 

of 30c as white solid. Mp 158 – 160 °C; 1H NMR (400 MHz, CDCl3): δ (ppm) 8.02 (d, J = 

8.0 Hz, 2H), 7.68 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 

6.23 (s, 1H), 6.13 (s, 1H), 3.58 (s, 2H), 3.43 (t, J = 4.6 Hz, 4H), 2.39 (t, J = 4.6 Hz, 4H), 

1.45 (s, 9H), 1.37 (s, 9H); 13C NMR (101 MHz, CDCl3): δ (ppm) 166.3, 164.4, 154.7, 

144.9, 141.1, 132.4, 129.8, 129.2, 127.8, 127.6, 118.4, 112.5, 79.7, 74.9, 62.5, 52.9, 51.8, 

43.9, 43.0, 28.6, 28.4; ESIMS: m/z calculated for C30H38N4O5 (M+H)+ 557.27, found 

557.36. 
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Preparation of 2-(tert-Butylamino)-2-oxo-1-phenylethyl-4-((4-(2-(methoxycarbonyl)-3-

phenylallyl) piperazin-1-yl)methyl)benzoate 12a: To a stirred solution of acrylate 21a (150 

mg, 0.64 mmol) in N,N-dimethylformamide (10.0 mL), was added compound 20a (313 

mg, 0.7 mmol) and followed by addition of  K2CO3 (132 mg, 0.96 mmol). The reaction 

was stirred for 10 h and diluted with cold water upon completion.  The reaction mixture 

was extracted with ethyl acetate (2 x 10 mL) and the combined extracts were washed with 

brine, dried over anhydrous Na2SO4 and concentrated under reduced pressure. Further 

purification of the crude product by chromatography (silica gel, hexanes: ethyl acetate, 4:1) 

yielded 12a as white solid (291 mg, 78%). Mp 124 – 126 °C; 1H NMR (400 MHz, CDCl3): 

δ (ppm) 8.03 (d, J = 8.4 Hz, 2H), 7.85 (s, 1H), 7.63 – 7.66 (m, 2H), 7.51 (dd, J = 1.5, 7.8 

Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 7.29 – 7.39 (m, 6H), 6.21 (s, 1H), 6.02 (s, 1H), 3.81 (s, 

3H), 3.54 (s, 2H), 3.36 (s, 2H), 2.37 – 2.58 (m, 8H), 1.37 (s, 9H); 13C NMR (101 MHz, 

CDCl3): δ (ppm) 169.3, 167.7, 165.0, 145.1, 143.6, 136.3, 135.6, 130.7, 129.9, 129.4, 

129.2, 129.0, 128.9, 128.6, 128.3, 127.6, 76.2, 62.8, 53.5, 53.4 (2C), 52.8, 52.3, 51.8, 28.9; 

ESIMS: m/z calculated for C35H41N3O5 (M+H)+ 584.3, found 584.4, HPLC purity 94.2%. 
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Preparation of 2-(tert-butylamino)-2-oxo-1-phenylethyl-4-((4-(3-(4-fluorophenyl)-2-

methoxycarbonyl)allyl) piperazin-1-yl)methyl)benzoate 12b: Procedure similar to that of 

12a. The reaction of 21b (150 mg, 0.59 mmol) with compound 20a (292 mg, 0.65 mmol) 

in presence of potassium carbonate (123 mg, 0.88 mmol) yielded 266 mg (75%) of 12b as 

white solid. Mp 98 – 101 °C; 1H NMR (400 MHz, CDCl3): δ (ppm) 8.02 (d, J = 8.0 Hz, 

2H), 7.81 (s, 1H), 7.70 (dd, J = 5.6, 8.8 Hz, 2H), 7.51 (dd, J = 1.8, 7.8 Hz, 2H), 7.43 (d, J 

= 8.0 Hz, 2H), 7.33 – 7.39 (m, 3H), 7.07 (t, J = 8.4 Hz, 2H), 6.21 (s, 1H), 6.00 (s, 1H), 3.80 

(s, 3H), 3.55 (s, 2H), 3.33 (s, 2H), 2.36 – 2.60 (m, 8H), 1.36 (s, 9H); 13C NMR (101 MHz, 

CDCl3): δ (ppm) 169.2, 167.6, 165.0, 163.27 (d, J = 250.3 Hz), 145.0, 142.8, 136.2, 132.94 

(d, J = 8.1 Hz), 131.76 (d, J = 3.2 Hz), 129.9, 129.3, 129.1, 128.9, 128.3, 127.6, 115.63 (d, 

J = 21.5 Hz), 76.1, 62.7, 53.5, 53.4 (2C), 52.7, 52.4, 52.3, 51.8, 28.9; ESIMS: m/z 

calculated for C35H40FN3O5 (M+H)+ 602.3, found 602.4; HPLC purity 89.2%. 
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Preparation of 2-(tert-butylamino)-2-oxo-1-phenylethyl-4-((4-(2-(methoxycarbonyl)-3-(4-

methoxyphenyl)allyl) piperazin-1-yl)methyl)benzoate 12c: Procedure similar to that of 12a. 

The reaction of 21d (150 mg, 0.56 mmol) with compound 20a (275 mg, 0.61 mmol) in 

presence of potassium carbonate (116 mg, 0.84 mmol) yielded 254 mg (74%) of X as white 

solid. Mp 95 – 98 °C; 1H NMR (400 MHz, CDCl3): δ (ppm) 7.94 (d, J = 8.0 Hz, 2H), 7.74 

(s, 1H), 7.59 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 6.8 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.23 – 

7.32 (m, 3H), 6.82 (d, J = 8.8 Hz, 2H), 6.13 (s, 1H), 6.01 (s, 1H), 3.73 (s, 3H), 3.70 (s, 3H), 

3.46 (s, 2H), 3.27 (s, 2H), 2.26 – 2.56 (m, 8H), 1.27 (s, 9H); 13C NMR (101 MHz, CDCl3): 

δ (ppm) 169.5, 167.7, 165.0, 160.6, 145.1, 143.8, 136.3, 132.9, 129.9, 129.4, 129.0, 128.9 

(2C), 128.3, 127.6, 127.2, 114.1, 76.2, 62.7, 55.5, 53.6, 53.4, 53.3, 52.7, 52.2, 52.2, 51.8, 

28.9; ESIMS: m/z calculated for C36H43N3O6 (M+H)+ 614.3, found 614.4; HPLC purity 

90.2%.  
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Preparation of 2-(tert-Butylamino)-1-(4-cyanophenyl)-2-oxoethyl-4-((4-(3-(4-

fluorophenyl)-2-(methoxy carbonyl)allyl)piperazin-1-yl)methyl)benzoate 12d: Procedure 

similar to that of 12a. The reaction of 21b (150 mg, 0.59 mmol) with compound 20c (308 

mg, 0.65 mmol) in presence of potassium carbonate (122 mg, 0.88 mmol) yielded 292 mg 

(79%) of X as white solid. Mp 86 – 88 °C; 1H NMR (400 MHz, CDCl3): δ (ppm) 8.01 (d, 

J = 8.4 Hz, 2H), 7.82 (s, 1H), 7.60 – 7.74 (m, 6H), 7.47 (d, J = 8.4 Hz, 2H), 7.07 (t, J = 8.6 

Hz, 2H), 6.24 (s, 1H), 6.13 (s, 1H), 3.81 (s, 3H), 3.57 (s, 2H), 3.33 (s, 2H), 2.39 – 2.58 (m, 

8H), 1.37 (s, 9H); 13C NMR (101 MHz, CDCl3): δ (ppm) 169.2, 166.5, 164.6, 163.3 (d, J 

= 250.4 Hz), 145.6, 142.8, 141.3, 132.9 (d, J = 8.2 Hz), 132.7, 131.7 (d, J = 3.2 Hz), 129.9, 

129.5, 129.3, 128.1, 127.6, 118.7, 115.6 (d, J = 21.4 Hz), 112.8, 75.2, 62.7, 53.5, 53.4, 

52.7, 52.4, 52.1, 28.9; ESIMS: m/z calculated for C36H39FN4O5 (M+H)+ 627.3, found 

627.4; HPLC purity 91.3%. 
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Preparation of 2-(tert-Butylamino)-1-(4-cyanophenyl)-2-oxoethyl-4-((4-(3-(4-

cyanophenyl)-2-(methoxy carbonyl)allyl)piperazin-1-yl)methyl)benzoate 12e: Procedure 

similar to that of 12a. The reaction of 21c (150 mg, 0.57 mmol) with compound 20c (295 

mg, 0.62 mmol) in presence of potassium carbonate (118 mg, 0.86 mmol) yielded 274 mg 

(76%) of 12e as cream color solid. Mp 89 – 92 °C; 1H NMR (400 MHz, CDCl3): δ (ppm) 

8.01 (d, J = 8.4 Hz, 2H), 7.77 – 7.82 (m, 3H), 7.62 – 7.69 (m, 6H), 7.46 (d, J = 8.4 Hz, 

2H), 6.23 (s, 1H), 6.12 (s, 1H), 3.83 (s, 3H), 3.56 (s, 2H), 3.31 (s, 2H), 2.36 – 2.57 (m, 8H), 

1.37 (s, 9H); 13C NMR (101 MHz, CDCl3): δ (ppm) 168.6, 166.5, 164.6, 145.5, 141.4, 

141.3, 140.1, 132.7, 132.7, 132.2, 131.1, 129.9, 129.5, 128.9, 128.1, 127.7, 118.8, 118.6, 

112.8, 112.4, 75.2, 62.6, 53.4, 53.4, 52.7, 52.6, 52.1, 28.9; ESIMS: m/z calculated for 

C37H39N5O5 (M+H)+ 634.3, found 634.4; HPLC purity 96.2%. 
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Preparation of 2-(tert-Butylamino)-1-(4-fluorophenyl)-2-oxoethyl-4-((4-(3-(4-

fluorophenyl)-2-(methoxy carbonyl)allyl)piperazin-1-yl)methyl)benzoate 12f: Procedure 

similar to that of 21a. The reaction of 21b (150 mg, 0.59 mmol) with compound 20b (301 

mg, 0.65 mmol) in presence of potassium carbonate (122 mg, 0.88 mmol) yielded 296 mg 

(81%) of 12f as white solid. Mp 94 – 96 °C, 1H NMR (400 MHz, CDCl3): δ (ppm) 7.93 (d, 

J = 7.9 Hz, 2H), 7.73 (s, 1H), 7.62 (dd, J = 5.7, 7.8 Hz, 2H), 7.42 (dd, J = 5.7, 8.0 Hz, 2H), 

7.36 (d, J = 7.8 Hz, 2H), 6.97 (t, J = 8.5 Hz, 4H), 6.11 (s, 1H), 6.07 (s, 1H), 3.71 (s, 3H), 

3.46 (s, 2H), 3.24 (s, 2H), 2.24 – 2.55 (m, 8H), 1.28 (s, 9H); 13C NMR (101 MHz, CDCl3): 

δ (ppm) 169.2, 167.4, 164.9, 163.3 (d, J = 250.2 Hz), 163.2 (d, J = 247.8 Hz), 145.2, 142.8, 

132.9 (d, J = 8.2 Hz), 132.2 (d, J = 3.3 Hz), 131.8 (d, J = 3.3 Hz), 129.9, 129.6 (d, J = 8.4 

Hz), 129.4, 129.4, 128.1, 115.9 (d, J = 21.7 Hz), 115.6 (d, J = 21.5 Hz), 75.4, 62.7, 53.5, 

53.4, 52.7, 52.4, 51.9, 28.9; ESIMS: m/z calculated for C35H39F2N3O5 (M+H)+ 620.3, found 

620.4; HPLC purity 96.5%. 
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Preparation of 2-(3-(4-cyano-3-(trifluoromethyl)phenyl)ureido)ethan-1-aminiumchloride 

25b: Procedure similar to that of 25a-c. Yield: 85%; pale cream solid; mp 233 – 236 °C; 

1H NMR (400 MHz, CDCl3): δ (ppm) 10.44 (s, 1H), 8.18 (d, J = 2.0 Hz, 1H), 8.03 (br s, 

3H), 7.95 (d, J = 8.6 Hz, 1H), 7.73 (dd, J = 2.0, 8.6 Hz, 1H), 7.06 (t, J = 5.8 Hz, 1H), 3.30 

– 3.38 (m, 2H), 2.82 – 2.92 (m, 2H); 13C NMR (101 MHz, CDCl3): δ (ppm) 155.5, 145.8, 

136.6, 132.1 (q, J = 31.3 Hz), 123.0 (q, J = 273.6 Hz), 120.5, 116.6, 115.0 (q, J = 4.7 Hz), 

99.18 (q, J = 2.9 Hz),, 37.5, 36.9; ESIMS: m/z calculated for C11H12ClF3N4O (M)+ 273.10, 

found 272.95;  

 

Preparation of 2-(3-(4-nitro-3-(trifluoromethyl)phenyl)ureido)ethan-1-aminiumchloride 

25c: Procedure similar to that of 25a-c. Yield: 87%; pale cream solid; mp 220 – 224 °C; 

1H NMR (400 MHz, CDCl3): δ (ppm) 10.34 – 10.45 (m, 1H), 8.21 (d, J = 2.3 Hz, 1H), 8.12 

(d, J = 9.0 Hz, 1H), 7.96 (br s, 3H), 7.77 (dd, J = 2.2, 9.0 Hz, 1H), 6.99 – 7.06 (m, 1H), 

3.35 (q, J = 6.0 Hz, 2H), 2.83 – 2.94 (m, 2H); 13C NMR (101 MHz, CDCl3): δ (ppm) 155.4, 

146.2, 139.7, 128.3, 123.7 (q, J = 33.0 Hz), 122.6 (q, J = 262.4 Hz), 120.4, 115.8 (q, J = 

6.0 Hz), 39.4, 37.6; ESIMS: m/z calculated for C10H12ClF3N4O3 (M)+ 293.09, found 

293.00. 
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Preparation of (E)-2-((4-methylpiperazin-1-yl)methyl)-3-phenyl-N-(2-(3-phenylureido) 

ethyl) acrylamide 13a: The reaction of acid 27 (150 mg, 0.58 mmol), with amine 25a(150 

mg, 0.70 mmol) yielded 198 mg (81%) of 13a as pale cream solid.  Mp 104 – 107 °C; 1H 

NMR (400 MHz, CDCl3): δ (ppm) 10.02 (t, J = 5.1 Hz, 1H), 8.04 (s, 1H), 7.88 (s, 1H), 

7.37 (d, J = 8.1 Hz, 2H), 7.27 – 7.34 (m, 3H), 7.11 – 7.21 (m, 4H), 6.93 (t, J = 7.4 Hz, 1H), 

6.40 (br s, 1H), 3.44 – 3.54 (m, 4H), 3.40 (s, 2H), 2.26 – 2.77 (m, 8H), 2.21 (s, 3H). 13C 

NMR (101 MHz, CDCl3): δ (ppm) 169.5, 156.4, 140.5, 139.6, 135.0, 129.7, 128.9, 128.9, 

128.4, 128.2, 122.3, 119.0, 54.9, 54.6, 52.1, 45.6, 39.9, 39.6; ESIMS: m/z calculated for 

C24H31N5O2 (M+H)+ 422.26, found 422.21; HPLC purity 98.2%.  

 

Preparation of (E)-N-(2-(3-(4-cyano-3-(trifluoromethyl)phenyl)ureido)ethyl)-2-((4-

methyl-piperazin-1-yl)methyl)-3-phenylacrylamide 13b: The reaction of acid 27 (130 mg, 

0.50 mmol), with amine 25b (185 mg, 0.60 mmol) yielded 196 mg (76%) of 13b as pale 

cream solid. Mp 119 – 121 °C; 1H NMR (400 MHz, CDCl3): δ (ppm) 10.35 – 10.43 (m, 

1H), 9.00 (br s, 1H), 7.89 (s, 1H), 7.84 (s, 1H), 7.68 (d, J = 8.1 Hz, 1H), 7.55 (d, J = 8.5 

Hz, 1H), 7.23 – 7.37 (m, 3H), 7.10 – 7.16 (m, 2H), 6.67 (br s, 1H), 3.48 – 3.58 (m, 4H),  
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3.46 (s, 2H), 2.31 – 2.67 (m, 8H), 2.27 (s, 3H); 13C NMR (101 MHz, CDCl3): δ (ppm) 

170.3, 155.2, 144.5, 141.0, 135.6, 134.4, 133.7 (q, J = 32.3 Hz), 129.3, 128.8, 128.7, 128.6, 

122.3 (q, J = 274.1 Hz), 119.9, 116.1, 115.5 (m), 101.1 (m), 54.9, 54.6, 52.1, 45.7, 39.8, 

29.7; ESIMS: m/z calculated for C26H29F3N6O2 (M+H)+ 515.24, found 515.19; HPLC 

purity 99.8%.  

 

Preparation of (E)-2-((4-methylpiperazin-1-yl)methyl)-N-(2-(3-(4-nitro-3-trifluoromethyl) 

phenyl)ureido)ethyl)-3-phenylacrylamide 13c: The reaction of acid 27 (110 mg, 0.42 

mmol), with amine 25c (166 mg, 0.51 mmol), yielded 175 mg (78%) of 13c as pale yellow 

solid. Mp 128 – 131 °C; 1H NMR (400 MHz, CDCl3): δ (ppm) 10.46 (t, J = 5.1 Hz, 1H), 

9.14 (s, 1H), 7.79 – 7.91 (m, 3H), 7.74 (d, J = 8.1 Hz, 1H), 7.28 – 7.36 (m, 3H), 7.10 – 7.15 

(m, 2H), 6.71 (br s, 1H), 3.49 – 3.59 (m, 4H), 3.45 (s, 2H), 2.29 – 2.65 (m, 8H), 2.25 (s, 

3H); 13C NMR (101 MHz, CDCl3): δ (ppm) 170.3, 155.2, 144.9, 140.9, 140.6, 134.3, 129.3, 

128.8, 128.6, 128.5, 127.4, 125.2 (q, J = 33.6 Hz), 121.9 (q, J = 273.4 Hz), 119.7, 116.4 

(m), 55.0, 54.6, 52.2, 45.8, 39.9, 39.8; ESIMS: m/z calculated for C25H29F3N6O4 (M+H)+ 

535.23, found 535.27; HPLC purity 98.3%.  
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Preparation of (E)-2-((4-methylpiperazin-1-yl)methyl)-N-(2-oxo-2-(phenylamino)ethyl)-

3-phenylacrylamide 14a: N,N-diisopropylethylamine (239 µL, 1.38 mmol), HOBt (68 mg, 

0.51 mmol), and EDCI (97 mg, 0.51 mmol) were added at 0 °C to a stirred solution of the  

acid 28 (120 mg, 0.46 mmol),  in dichloromethane (10.0 mL) and the reaction was stirred 

for 30 min. The amine 29 (103 mg, 0.55 mmol), was added in one portion and the reaction 

was stirred overnight at room temperature. After completion of the reaction as indicated by 

TLC, the reaction mixture was quenched by the addition of saturated NaHCO3 solution and 

extracted with dichloromethane (2 x 10.0 mL). The combined extracts were washed with 

brine (10.0 mL), dried over anhydrous Na2SO4, concentrated in vacuo, and purified by 

column chromatography (silica gel, hexanes:ethyl acetate) to obtain 140 mg (78%) of pure 

amide 14a as pale cream solid. Mp 115 – 117 °C; 1H NMR (400 MHz, CDCl3): δ (ppm) 

10.51 (t, J = 5.2 Hz, 1H), 8.94 (s, 1H), 8.00 (s, 1H), 7.57 (d, J = 7.6 Hz, 2H), 7.23 – 7.40 

(m, 6H), 7.10 (t, J = 7.4 Hz, 1H), 4.20 (d, J = 5.6 Hz, 2H), 3.48 (s, 2H), 2.32 – 2.86 (m, 

8H), 2.28 (s, 4H); 13C NMR (101 MHz, CDCl3): δ (ppm) 169.4, 167.7, 141.1, 138.1, 135.1, 

129.2, 129.0, 128.9, 128.4, 128.2, 124.1, 119.8, 54.8, 54.7, 52.3, 45.8, 45.6; ESIMS: m/z 

calculated for C23H28N4O2 (M+H)+ 393.23, found 393.31; HPLC purity 96.9%.  
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Preparation of (E)-N-(2-((4-cyano-3-(trifluoromethyl)phenyl)amino)-2-oxoethyl)-2-((4-

methyl- piperazin-1-yl)methyl)-3-phenylacrylamide 14b: Procedure similar to that of 14a. 

The reaction of acid 28 (130 mg, 0.50 mmol), with amine 29 (168 mg, 0.60 mmol) yielded 

180 mg (74%) of 14b as pale cream solid. Mp 122 – 125 °C; 1H NMR (400 MHz, CDCl3): 

δ (ppm) 11.05 (br s, 1H), 10.42 (s, 1H), 8.04 (s, 1H), 8.01 (d, J = 8.7 Hz, 1H), 7.96 (s, 1H), 

7.68 (d, J = 8.4 Hz, 1H), 7.20 – 7.44 (m, 5H), 4.39 (d, J = 4.5 Hz, 2H), 3.53 (s, 2H), 2.37 

– 2.93 (m, 8H), 2.31 (s, 3H). 13C NMR (101 MHz, CDCl3): δ (ppm) 169.7, 167.9, 142.7, 

141.3, 135.6, 134.7, 133.7 (q, J = 32.6 Hz), 129.1, 128.9, 128.5, 128.5, 122.1 (q, J = 274.1 

Hz), 121.8, 117.2 (q, J = 4.9 Hz), 115.6, 103.7 (m), 54.8 (2C), 52.3, 45.8, 45.3; ESIMS: 

m/z calculated for C25H26F3N5O2 (M+H)+ 486.21, found 486.22; HPLC purity 98.4%. 
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Chapter 3: Proton and Carbon NMR Spectra 

 

Figure 23. 400 MHz 1H NMR of Compound 18a in CDCl3 
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Figure 24. 101 MHz 13C NMR of Compound 18a in CDCl3 
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Figure 25. 400 MHz 1H NMR of Compound 18b in CDCl3 
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Figure 26. 101 MHz 13C NMR of Compound 18b in CDCl3 
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Figure 27. 400 MHz 1H NMR of Compound 18c in CDCl3 
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Figure 28. 101 MHz 13C NMR of Compound 18c in CDCl3 
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Figure 29. 400 MHz 1H NMR of Compound 30a in CDCl3 



 

 

44 

 

Figure 30. 101 MHz 13C NMR of Compound 30a in CDCl3 
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Figure 31. 400 MHz 1H NMR of Compound 30b in CDCl3 
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Figure 32. 101 MHz 13C NMR of Compound 30b in CDCl3 
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Figure 33. 400 MHz 1H NMR of Compound 30c in CDCl3 
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Figure 34. 101 MHz 13C NMR of Compound 30c in CDCl3 
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Figure 35. 400 MHz 1H NMR of Compound 12a in CDCl3 
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Figure 36.  101 MHz 13C NMR of Compound 12a in CDCl3 
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Figure 37. 400 MHz 1H NMR of Compound 12b in CDCl3 
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Figure 38. 101 MHz 13C NMR of Compound 12b in CDCl3 
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Figure 39. 400 MHz 1H NMR of Compound 12c in CDCl3 
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Figure 40. 101 MHz 13C NMR of Compound 12c in CDCl3  
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Figure 41. 400 MHz 1H NMR of Compound 12d in CDCl3  
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Figure 42. 101 MHz 13C NMR of Compound 12d in CDCl3 
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Figure 43. 400 MHz 1H NMR of Compound 12e in CDCl3 
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Figure 44. 101 MHz 13C NMR of Compound 12e in CDCl3 
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Figure 45. 400 MHz 1H NMR of Compound 12f in CDCl3 
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Figure 46.101 MHz 13C NMR of Compound 12f in CDCl3 
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Figure 47. 400 MHz 1H NMR of Compound 25b in DMSO-d6 
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Figure 48. 101 MHz 13C NMR of Compound 25b in DMSO-d6 
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Figure 49. 400 MHz 1H NMR of Compound 25c in DMSO-d6 
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Figure 50. 101 MHz 13C NMR of Compound 25c in DMSO-d6 
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Figure 51. 400 MHz 1H NMR of Compound 13a in CDCl3 
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Figure 52. 101 MHz 13C NMR of Compound 13a in CDCl3 
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Figure 53. 400 MHz 1H NMR of Compound 13b in CDCl3 
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Figure 54.101 MHz 13C NMR of Compound 13b in CDCl3 
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Figure 55. 400 MHz 1H NMR of Compound 13c in CDCl3 
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Figure 56. 101 MHz 13C NMR of Compound 13c in CDCl3 
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Figure 57. 400 MHz 1H NMR of Compound 14a in CDCl3 
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Figure 58. 101 MHz 13C NMR of Compound 14a in CDCl3 
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Figure 59. 400 MHz 1H NMR of Compound 14b in CDCl3 
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Figure 60. 101 MHz 13C NMR of Compound 14b in CDCl3 
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